Optical-resolution photoacoustic microscopy for volumetric and spectral analysis of histological and immunochemical samples.

نویسندگان

  • Yu Shrike Zhang
  • Junjie Yao
  • Chi Zhang
  • Lei Li
  • Lihong V Wang
  • Younan Xia
چکیده

Optical-resolution photoacoustic microscopy (OR-PAM) is an imaging modality with superb penetration depth and excellent absorption contrast. Here we demonstrate, for the first time, that this technique can advance quantitative analysis of conventional chromogenic histochemistry. Because OR-PAM can quantify the absorption contrast at different wavelengths, it is feasible to spectrally resolve the specific biomolecules involved in a staining color. Furthermore, the tomographic capability of OR-PAM allows for noninvasive volumetric imaging of a thick sample without microtoming it. By immunostaining the sample with different chromogenic agents, we further demonstrated the ability of OR-PAM to resolve different types of cells in a coculture sample with imaging depths up to 1 mm. Taken together, the integration of OR-PAM with (immuno)histochemistry offers a simple and versatile technique with broad applications in cell biology, pathology, tissue engineering, and related biomedical studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection, Mapping, and Quantification of Single Walled Carbon Nanotubes in Histological Specimens with Photoacoustic Microscopy

AIMS In the present study, the efficacy of multi-scale photoacoustic microscopy (PAM) was investigated to detect, map, and quantify trace amounts [nanograms (ng) to micrograms (µg)] of SWCNTs in a variety of histological tissue specimens consisting of cancer and benign tissue biopsies (histological specimens from implanted tissue engineering scaffolds). MATERIALS AND METHODS Optical-resolutio...

متن کامل

Photoacoustic Microscopy in Tissue Engineering.

Photoacoustic tomography (PAT) is an attractive modality for noninvasive, volumetric imaging of scattering media such as biological tissues. By choosing the ultrasonic detection frequency, PAT enables scalable spatial resolution with desired imaging depth up to ~7 cm while maintaining a high depth-to-resolution ratio of ~200 and consistent optical absorption contrasts. Photoacoustic microscopy ...

متن کامل

Ultrahigh resolution photoacoustic microscopy via transient absorption

We have developed a novel, hybrid imaging modality, Transient Absorption Ultrasonic Microscopy (TAUM), which takes advantage of the optical nonlinearities afforded by transient absorption to achieve ultrahigh-resolution photoacoustic microscopy. The theoretical point spread function for TAUM is functionally equivalent to confocal and two-photon fluorescence microscopy, potentially enabling cell...

متن کامل

Bessel-beam Grueneisen relaxation photoacoustic microscopy with extended depth of field.

The short focal depth of a Gaussian beam limits the volumetric imaging speed of optical resolution photoacoustic microscopy (OR-PAM). A Bessel beam, which is diffraction free, provides a long focal depth, but its side lobes deteriorate image quality when the Bessel beam is directly employed to excite photoacoustic (PA) signals in OR-PAM. We present a nonlinear approach based on the Grueneisen r...

متن کامل

Collecting back-reflected photons in photoacoustic microscopy

Since the photoacoustic effect relies only on the absorbed optical energy, the back-reflected photons from samples in optical-resolution photoacoustic microscopy are usually discarded. By employing a 2 x 2 single-mode fiber optical coupler in a laser-scanning optical-resolution photoacoustic microscope for delivering the illuminating laser light and collecting the back reflected photons, a fibe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Angewandte Chemie

دوره 53 31  شماره 

صفحات  -

تاریخ انتشار 2014